20231

120 MINUTES

1.	Which of the following statements is /are true:												
	1.	Every Cauchy sequence is bounded											
	2.	Every bounded sequence is always a Cauchy sequence											
	3.	A sequence converges in real line if and only if it is a Cauchy sequence											
	A)	2 & 3 only	B)	1 & 3 only	C)	All	D)	none					
2.	$\sum_{n=1}^{\infty}$	$1 \frac{1}{n^{\alpha + \frac{1}{n}}} \text{ is:}$											
	A)	always dive	rgent										
	B)	· · · · · · · · · · · · · · · · · · ·											
	Ć)	convergent if $\alpha > 1$ and divergent if $\alpha \le 1$											
	D)	convergent i	if $\alpha \le 1$ a	and divergent i	$f \alpha > 1$								
3.	If [x]	denote the gre	eatest int	eger not greate	er than x	x , then $\lim_{r \to \infty} \frac{1}{r}$	$_{\rightarrow 0}[x] =$						
	A)	0	B)	-1	C)	1	D)	does not exist					
4.	The f	function on R o	lefined b	$\operatorname{ov} f(x) = 2x$	+ x i	s:							
	A)	differentiabl											
	B)	not different	tiable bu	t continuous									
	C)	differentiabl	e but no	t continuous									
	D)	neither diffe	rentiable	e nor continuo	us								
5.	Whic	ch of the follow	ing is n	ot true in a me	tric spa	ce?							
	A)	finite union	_		orie spa								
	B)	finite intersection of open sets is open											
	C)	arbitrary union of open sets is open											
	D)	arbitrary into	ersection	n of open sets i	is open								
6.	A bo	ounded function	n f is Rie	emann integral	ble on [a	a, b] if the so	et of its poi	nts of discontinuity is					
	A)	finite	B)	infinite	C) [oscillator	-	none of these					
7.	If Le	besgue outer m	neasure (of a set E is 0,	then								
	A)	E is measura	able	B)	E is:	not measura	ble						
	C)	E is always	empty	D)	none	of the abov	e						
8.	The s	set {(2, -1, 3), ((3, 4, -1)	$\{(k, 2, 1)\}$ is 1	inearly	dependent if	3.						
	A)	k = 3	B)	k = -1	C)	k = 0	D)	$k \neq 3$					
9.	If A	is a square mat	rix, then	$A + A^{T}$ is a:									
	A)	symmetric n		B)	skew	symmetric	matrix						
	C)	idempotent		D)		of these							

10.	A)	be an m \times n ma Rank (A) \leq Rank (A) = Rank	ank (AA	$^{\mathrm{T}})$	B) D)		$A \ge Rank (AA)$ $A \ge Rank (A^T)$		
11.	Each e A) C)	eigen value of a 1 0	ın idempo	otent m	natrix is B) D)	either on none o			
12.		positive defining	ite	- 10y ²		positivi indefi	ve semi-definit nite	e	
13.		enotes the number of P(s) of X is:	ber of tos	sses red	quired to	o obtair	a head in toss:	ing an u	nbiased coin, then
	A)	$\frac{1}{2-s}$	B)	$\frac{s}{2-s}$		C)	$\frac{1}{1-s}$	D)	none of these
14.		$X_1, X_2,, X_n$ be $X_1 + X_2 + + X_n$		om vai	riables v	with me	an 0 and variar	nce 1. T	hen
	A)	≤ 1	B)	\leq n ⁻¹		C)	= 0	D)	none of these
15.		and Y be two rand X - Y are	andom v	ariable	s with c	commor	n mean and con	nmon va	ariance. Then
	A) C)	independent correlated			B) D)	uncorr none o		necessa	rily be independent
16.	P(A):	and B are two $=\frac{1}{3}$ and $P(B)$:	$=\frac{3}{4}$. The	n P{A	AUB}	=		lity spac	ce with
	A)	$\frac{1}{3}$	B)	<u>5</u> 6		C)	<u>2</u> <u>5</u>	D)	1
17.		y two events A $P(A \cap B) \ge 1 - P(A \cap B) \ge 1 - P(A \cap B)$	$-P(A^c)$ –				$ A(B) \ge 1 - P(A) - B(A^c) -$		
18.		$\{a_n\}$ be a non incomp $\{A_n\} = \{a_n\}$	creasing	sequen	ce of ev	ents in	the sample spa	ice. The	n
	A)	$P(\bigcap_{n=1}^{\infty}A_n)$	B)	$P(\bigcup_{n=1}^{\infty}$	$=1 A_n$	C)	0	D)	1
19.		ered samples of ement, the total						lements	without
	A)	n ^r	B)	nC_r		C)	nP_r	D)	r!
20.	The so A) C)	et of discontinu uncountable finite	iity point	s of a o	listribut B) D)		t countable		

21. Let G be a function of two variables defined by $G(x, y) = 1$ if $x + 2y \ge 1$, an $x + 2y < 1$. Then G is:							and 0 if			
	A) B) C) D)	distribution for distribution for distribution for not a distribu	unction (of a pai of a pai	ir of cor	ntinuous	random var	iables		
22.		th of the following of the following $\frac{1+xy}{4}$, $ x $	_		ne rando	om varia	bles X and Y	Y having	joint pdf	
	1. 2.	X and Y are i X^2 and Y^2 are								
	A) C)	Only 1 is true Both 1 and 2			B) D)	•	2 is true of these			
23.	1, 2,	umbers 1, 2,, 12 appear a		ours in			_	bability t		;
	A)	<u>3</u> 5	B)	8! 20!		C)	12!×8! 20!	D)	9! 20!	
24.		are two bags. One ball is dra		either		wo bags	a. Probability			
	A)	1	B)	$\frac{16}{81}$		C)	$\frac{1}{2}$	D)	none	
25.	A)	and Y be two to $E[(XY)^{2}] = 0$ $E[(XY)^{2}] \le 0$.1	variable	B)	E[(XY	$[0.5 \text{ and E(Y)}^2] \ge 0.1$ $[Y)^2] = 0.01$	$(x^2) = 0.2.$	Then	
26.	Let X A) B) C) D)	~ $P(\lambda)$, where the distribution that the distribution t	on is uni on is bin on has no	modal nodal o mode		Then				
27.		$X_1, X_2,, X_n$ be neter p . Then w						ic distribu	ition with	
	A)	$\min(X_1, X_2,$	$, X_n$	is a ge	ometric	random	ı variable wi	th parame	eter 1- (1- <i>p</i>	$(r)^n$
	B)	$\min(X_1, X_2,$	$, X_n$	is a ge	ometric	random	ı variable wi	th parame	eter $(1-p)^n$	
	C)	$\min(X_1, X_2,$		is a ne	gative b	oinomial	random var	riable with	probability	of
		success 1- (1	- /							2
	D)	$\min(X_1, X_2,$ success (1- μ		is a ne	gative b	oinomial	random var	rable with	n probability	of

	A)	2	B)	3	C)	4	D)	5	
29.	If <i>X</i> f A)	follows expone $U[0, 1]$	ntial dis B)	tribution with a				of $Y = 1$ -Pareto	$e^{-\beta X}$ is:
30.				action $M(t)$ of $y^{\alpha-1}, y > 0, \alpha$,		distribut	ion with pdf		
		ts when							
				$t \ge \beta$		•		,	
31.	Let 2	Y and Y be iid	$N(0, \sigma)$	²) random var	iables. T	Then the	distribution of	$\frac{X}{Y}$ is	
	A) C)	Normal Chi-square o	listribut	ion B)	Cauc F -d	hy istribution	n	•	
32.	Whice A) B) C) D)	h of the follow logistic distr Weibull dist double expo normal distr	ribution ribution nential		sitive s	apport			
33.	distri distri A)		on of the $F(x)$ in $F(x)$	peta function de r^{th} order states:		$X_{r:n}$ when B)	70 \	is taken $-r+1$	
34.		$X_{1:n}, X_{2:n},, X_{n}$ lation. The E		he order stati	stics of	f a rando	om sample t	aken fron	n <i>U</i> [0, 1]
	A)	$\frac{r}{n}$	B)	$\frac{r-1}{n}$	C)	$\frac{r-1}{n+1}$	D)	$\frac{r}{n+1}$	
35.	Let X	$G \sim F(m, n)$. Th	E(X)	() exists only v	vhen				
	A)	m > 1	B)	n > 1	C)	m > 2	D)	n > 2	

A box contains 20 marbles. Of these, 12 are drawn at random, marked and returned to the box. The content of the box is thoroughly mixed and 5 marbles are drawn at random from the box without replacement. Then the mean number of marked marbles in the sample is:

28.

36.	$Y = \sum_{A}$ A) B)	$\sum_{i=1}^{n} X_i^2$ follows Central Chi-s t - distributio F -distributio	s: square d n on		, 1) rand	lom variables,	then 1	the distribution of
37.	Which	if the correlat	bivariat tion betv al distri	e normal distri ween <i>X</i> and <i>Y</i> bution of <i>X</i> an	bution, z is zero	ate distribution <i>X</i> and <i>Y</i> are incompact then the	depende	ent if and only
	A)	1 only	B)	2 only	C)	1 and 2	D)	None of these
38.		$(X^2) < \infty$, then $V(X) \le V[E(X)]$		B)	V(X)	$\geq V[E(X Y)]$		
	C)	V(X) = V[E(X)]	(X Y)]	D)	V(X)	=V[E(Y X)]		
39.	sampl	le. Then an unb	iased es	stimator of θ^2 i	S			oer of 1's in the None of these
	A)	$\binom{n}{n}$	D)	n(n-1)	C)	n(n-1)	D)	None of these
40.	Let X true? A) B) C) D)	$\sum X_i$ is a com $\sum X_i^2$ is a con $(\sum X_i, \sum X_i^2)$	plete su nplete s is a coi	officient estima sufficient estim mplete sufficie	tor of θ ator of θ	heta		the following is
41.	Which 1. 2. 3.	A minimal su	ufficien ıfficient	t statistic is mi	nimal su nplete su	ufficient.	always	s complete
	A)	1 only	B)	2 only	C)	1 and 3 only	D)	2 and 3 only
42.		X_1, X_2, \dots, X_n be MVUE of β is		lom sample fro	om expo	onential distrib	oution v	with mean β . Then
	A)	\overline{X}	B)	$\frac{1}{\overline{X}}$	C)	$X_{(1)}$	D)	$nX_{(1)}$

43.		h among the t bound?	ollowin	g PDF	s satisfy	the reg	gularity condi	tions of	Cramer-Rao	
	1.	$f_{\theta}(x) = \theta^{-1}e^{-1}$	$\int_{0}^{x/\theta}, x > $	0, θ >	0	2.	$f_{\theta}(x) = e^{-(x-x)}$	$(\theta), x > \theta$	9	
	3.	$f_{\theta}(x) = \frac{1}{\theta}, 0$	$0 < x < \epsilon$	9		4.	$f_{\theta}(x) = \theta(1 - \frac{1}{2})$	θ) ^x , $x =$	= 0, 1,; 0 <	θ < 1
	A)	1 & 2 only	B)	1 &	4 only	C)	1, 2 & 4 only	y D)	1, 2, 3 & 4	
44.	Based	d on a random	sample	of size	e n fron	n U (- θ	(θ, θ) , the MLE	of θ is		
	A)	$\max(X_i)$			B)	min((X_i)			
	C)	$\max(X_i) + r$	$\min(X_i)$)	D)	max ($ X_i $			
45.	Let X	X_1, X_2, \dots, X_n \mathcal{X}_1	oe a ra	ndom	sample	e taker	from $P(\lambda)$. Supp	ose that the	prior
	distrib	bution of λ is bution of λ is								sterior
	A) C)	Beta distribu Gamma distr		arst typ	e	B) D)	Beta distribution None of thes		econd type	
46.		dom sample of θ by the					$f_{\theta}(x) = \frac{\theta}{x^{\theta+1}}$	$\frac{1}{1}$, $x \ge 1$	1, heta > 1. Th	en the
	A)	-					$\frac{\bar{X}}{1-\bar{X}}$	D)	$\frac{\bar{X}}{\bar{X}-1}$	
47.	Let α	and β be the	probabi	lities o	f type I	and typ	pe II errors of	the mos	st powerful te	est for
	testing A)	g a simple null $\alpha < \beta$					ternative hypo $\alpha \le \beta$		if $0 < \alpha < 1$, the $\alpha \le 1 - \beta$	ien
48.	Let X	X_1, X_2, \dots, X_n b	e a ran	dom sa	ample f	rom the	Cauchy distri	bution w	ith pdf	
	$f_{\theta}(x)$	$(x) = \frac{1}{\pi} \frac{1}{1 + (x - \theta)}$	$\overline{\theta})^2$, $x \in$	R. The	en whicl	n of the	following state	ement is	true.	
	A)	$\{f_{\theta}(x)\}$ pos	sess ML	R prop	erty					
	B)	Uniformly m	ost pow	erful te	est exists	s for test	ting H_0 : $\theta \le 0$	against	$H_1: \theta > 0$.	
	C)		_		•	-	ful test for test	$ling H_0$: θ	$0 \le 0$ against	
		$H_1: \theta > 0$ h	as the fo	orm \sum	$i=1$ $\frac{2x}{1+x}$	$\frac{L}{i^2} > k$.				

A) Normal B) Student's- t C) Chi-square D) None of these

Let ℓ be the likelihood ratio statistic for testing the hypothesis H_0 : $\theta \in \Theta_0$ against H_1 : $\theta \in \Theta_1$. Then under some regularity conditions, the asymptotic distribution of - $2 \log \ell$ is:

D)

49.

All the above statements are true

	B)	the null hypo	he probability of the sequential test procedure terminating with the rejection of he null hypothesis he probability of the sequential test procedure arriving at a conclusion								
	C) D)	None of these	_	sequential tes	st proced	ure arriving at	a conclu	ision			
52.	The MA A) B) C) D)	ann-Whitney U test is preferred to a t-test when data are paired sample sizes are small the assumption of normality is not met sample is dependent									
53.	Suppo	of significance	estimate $\alpha = 0.05$	e the mean 'm 5. What sample	easureme le size is	ent' with an err	or at mo	ost 0.2mm at the normality?			
54.		ple random san				-	ement, t	the probability of a			
	A)	$\frac{1}{NC_n}$	B)	$\frac{1}{n}$	C)	$\frac{1}{N}$	D)	$\frac{n}{N}$			
55.		ple random sar /OR is exactly?						-			
	A)	n = N	B)	2n = N	C)	2n = N + 1	D)	n > 50			
56.	With t	the usual notation	ons, in l	PPSWR an un	ibiased e	stimator for the	popula	tion mean is:			
	A)	$\frac{1}{n}\sum_{i=1}^{n}\frac{y_i}{P_i}$	B)	$\sum_{i=1}^{n} \frac{y_i}{P_i}$	C)	$\frac{1}{nN}\sum_{i=1}^{n}\frac{y_i}{P_i}$	D)	$\sum_{i=1}^{n} \frac{y_i}{n}$			
57.	of size	ulation divided 24 is selected 12, 12	under p	proportional al	location	Then the strat	um samj				
58.	-	intra class corre	_	coefficient ρ is	s:		e efficier	nt than SRSWOR			
	A)	less than $\frac{1}{N-1}$		B)	less th	$\tan -\frac{1}{N-1}$ or than $-\frac{1}{N-1}$					
	C)	less than $\frac{1}{N}$		D)	greate	er than $-\frac{1}{N-1}$					

largest significance level at which the null hypothesis cannot be rejected smallest significance level at which the null hypothesis cannot be rejected

largest significance level at which the null hypothesis can be rejected

smallest significance level at which the null hypothesis can be rejected

the probability of the sequential test procedure terminating with the acceptance of

p - value of a test is the:

Operating Characteristic (OC) function is:

the null hypothesis

50.

51.

A)

B)

C) D)

A)

59.	Which of the following is true?											
	1.	Ratio estimator is as good as regression estimator if regression of y on x is linear										
	2.	and passes the Ratio estimation	_	_		nators a	re unbiased					
	A) C)	only 1 is true both 1 and 2		e	B) D)	•	2 is true er 1 nor 2 is tru	le				
60.	The results of a two-factor analysis of variance produce degrees of freedom (2, 24) for the F-ratio for the factor A. Based on this information, how many levels of factor A were compared in the study?											
	A) 1	2	B)	3		C)	24	D)	25			
61.	In Ga A) B) C) D)		eed to b re norma re uncor	e homos ally dista	scedasti	_	g is NOT an ass inite variance	sumptio	n on errors.			
62.	Which A) B) C) D)	Randomized Latin square	l block a l block o design	and latin design is is conne	connec	ted but t randoi	are connected latin square de nized block de are not conne	esign is 1 esign is 1				
63.	In k × equal 1		in squar	e design	, the de	grees o	f freedom of th	ne error	sum of square is			
	A)	(k-1)	B)	k (k-2	2)	C)	(k-2)(k-1)	D)	(k-3)(k-2)			
64.	If N is the incidence matrix of a BIBD with usual parameters (v,b,r,k,λ) then which among the following statement(s) is/are true. 1. $NN' = (r - \lambda)I + \lambda J$, where I is $v \times v$ identity matrix and J is $v \times v$ matrix of 1's 2. Rank $(NN') = v$											
	A)	1 only	B)	2 only	y	C)	1 and 2	D)	None of these			
65.		usual notation ent combinati					t of factor A in	n a 2³ de	esign in which each			
	A)	$\frac{1}{4n}[a+ab+$										
	B)	$\frac{1}{4n}[b+ab+$										
	C)	$\frac{1}{4n}[c+ac+$										
	D)	$\frac{1}{4n}[abc+ab]$	b+ c+ ((1) - a - a	b- bc-	ac]						

66.	A 2 ⁴ design is arranged in 4 blocks by confounding the factors ABC and ACD. Then which of the following effect is also confounded with blocks.										
	A)	AC	B)	BD	unaca w	C)	BCD	D)	ABCD		
67.		ining two or m single continuo deflating moving avera	ous serie			splici		ng diffe	erent base periods		
68.) and P(q) reprene's index num		_	-		e's index numb	er for p	rices and		
	A)	L(p) P(q) = L	(q) P(p))	B)	L(p) F	P(p) = L(q) P(q))			
	C)	L(p) P(q) = L	(q)		D)	L(p) F	P(q) = P(p)				
69.	Which A) C)	of the followi Poisson proce Random walk	ess	Markov	Process B) D)						
70.	Which 1. 2.	ich of the following statements is/ are true? Poisson process is a process with stationary independent increment Brownian motion process is a process with stationary independent increment									
	A) C)	Only (1) is true Both (1) and		rue	B) D)		(2) is true r (1) nor (2) are	e true			
71.	If $p_{ij}^{(n)}$ $\sum_{j} p_{ij}^{(n)}$	denote the n st $=$	ep trans	sition pr	obabilit	y of a N	Markov chain fi	rom stat	e i to j, then		
	A)	1	B)	0		C)	∞	D)	none of these		
72.	transit		moves	with pr	obabilit	y p one	unit to the righ		, where at each with probability q		
	A)	p = q = 0.5	B)	p < q		C)	p > q	D)	$p \neq q$		
73.		$X_1(t)$ and $\{X_2(t)\}$ and $\{X_2(t)\}$							neters λ_1 and λ_2		
	A)	Poisson with	parame	ter $\frac{\lambda_1}{\lambda_1 + \lambda_2}$							
	B)	Binomial with	h param	eters k	and $\frac{\lambda_1}{\lambda_1}$	$\frac{1}{\lambda_2}$					
	C)	Binomial with	h param	eters n	and $\frac{\lambda_1}{\lambda_1+1}$	<u>1</u> ·λ ₂					
	D)	Binomial with			1	2					

74.	Among the following methods of finding trend, the method having greater subjectivity is:											
	A)	moving average method	B)	free hand method								
	C)	least squares method	D)	semi-average method								
75.	The	value one season expressed a	s the per	centage of the preceding season is known as:								
	A)	link relatives	B)	Chain relatives								
	C)	seasonal indices	D)	None of the above								
76.	In an	M/M/1 queue with arrival ra	ate λ and	service rate μ , the steady state probabilities:								
	A)	always exist	B)	exist only when $\lambda \leq \mu$								
	C)	exist only when $\lambda < \mu$	D)	exist only when $\lambda > \mu$								
77.		ch of the following are true for ibution?	or a rando	om vector X having multivariate normal								
	1.		-	nents of X are normally distributed								
	2.			Thave a normal distribution								
	3.	Zero covariance implies the distributed	nat the co	orresponding components are independently								
	4.	The conditional distribution	ons of the	e components are normal.								
	A)	All the above	B)	only 1, 2 and 4								
	C)	only 1 and 4	D)	only 1, 3 and 4								
	distri A)	ibuted as: χ^2 with p degrees of freed										
	B)	χ^2 with p - 1 degrees of fr	reedom									
	C)	$N_p(0, I)$										
	D)	$N_p(0,\mu\Sigma\;\mu')$										
79.	Let Y	$X_1, X_2,, X_n$ be a random sa	ample fro	m $N_p(\mu, \Sigma)$. Define $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$ and								
	$S = \frac{1}{2}$	$\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})(X_i - \bar{X})'.$	Then (n –	- 1) S is distributed as:								
	A)	Wishart with n d.f	B)	Chi-square with p d.f								
	C)	$N_p(\mu, \Sigma)$	D)	Wishart with $(n-1)d.f$								
80.	is kn	own as:		ble X_1 , with several other variables $X_2, X_3,, X_k$								
	A)	partial correlation	B)	multiple correlation								
	C)	simple correlation	D)	autocorrelation								