A

1. Which of the following statements is /are true:
2. Every Cauchy sequence is bounded
3. Every bounded sequence is always a Cauchy sequence
4. A sequence converges in real line if and only if it is a Cauchy sequence
A) $2 \& 3$ only
B) $1 \& 3$ only
C) All
D) none
5. $\quad \sum_{n=1}^{\infty} \frac{1}{n^{\alpha+\frac{1}{n}}}$ is:
A) always divergent
B) always convergent
C) convergent if $\alpha>1$ and divergent if $\alpha \leq 1$
D) convergent if $\alpha \leq 1$ and divergent if $\alpha>1$
6. If $[\mathrm{x}]$ denote the greatest integer not greater than x , then $\lim _{x \rightarrow 0}[x]=$
A) 0
B) -1
C) 1
D) does not exist
7. The function on R defined by $f(x)=2 x+|x|$ is:
A) differentiable and continuous
B) not differentiable but continuous
C) differentiable but not continuous
D) neither differentiable nor continuous
8. Which of the following is not true in a metric space?
A) finite union of open sets is open
B) finite intersection of open sets is open
C) arbitrary union of open sets is open
D) arbitrary intersection of open sets is open
9. A bounded function f is Riemann integrable on $[a, b]$ if the set of its points of discontinuity is:
A) finite
B) infinite
C) oscillatory
D) none of these
10. If Lebesgue outer measure of a set E is 0 , then
A) E is measurable
B) $\quad \mathrm{E}$ is not measurable
C) E is always empty
D) none of the above
11. The set $\{(2,-1,3),(3,4,-1),(k, 2,1)\}$ is linearly dependent if:
A) $\mathrm{k}=3$
B) $\mathrm{k}=-1$
C) $\mathrm{k}=0$
D) $\quad \mathrm{k} \neq 3$
12. If A is a square matrix, then $A+A^{T}$ is a :
A) symmetric matrix
B) skew symmetric matrix
C) idempotent matrix
D) none of these
13. Let A be an $\mathrm{m} \times \mathrm{n}$ matrix. Then
A) $\quad \operatorname{Rank}(\mathrm{A}) \leq \operatorname{Rank}\left(\mathrm{AA}^{\mathrm{T}}\right)$
B) $\quad \operatorname{Rank}(\mathrm{A}) \geq \operatorname{Rank}\left(\mathrm{AA}^{\mathrm{T}}\right)$
C) $\quad \operatorname{Rank}(A)=\operatorname{Rank}\left(A A^{T}\right)$
D) $\quad \operatorname{Rank}(\mathrm{A}) \leq \operatorname{Rank}\left(\mathrm{A}^{\mathrm{T}} \mathrm{A}\right)$
14. Each eigen value of an idempotent matrix is:
A) 1
B) either 0 or 1
C) 0
D) none of these
15. The quadratic form $x^{2}+6 x y+10 y^{2}$ is:
A) positive definite
B) positive semi-definite
C) negative definite
D) indefinite
16. If X denotes the number of tosses required to obtain a head in tossing an unbiased coin, then the $\operatorname{pgf} \mathrm{P}(\mathrm{s})$ of X is:
A) $\frac{1}{2-s}$
B) $\frac{s}{2-s}$
C) $\frac{1}{1-s}$
D) none of these
17. Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}$ be iid random variables with mean 0 and variance 1 . Then $P\left[\left|X_{1}+X_{2}+\cdots X_{n}\right| \geq \sqrt{n}\right]$
A) ≤ 1
B) $\leq \mathrm{n}^{-1}$
C) $=0$
D) none of these
18. Let X and Y be two random variables with common mean and common variance. Then $\mathrm{X}+\mathrm{Y}$ and $\mathrm{X}-\mathrm{Y}$ are
A) independent
B) uncorrelated and not necessarily be independent
C) correlated
D) none of these
19. Let A and B are two independent events defined on some probability space with $P(A)=\frac{1}{3}$ and $P(B)=\frac{3}{4}$. Then $P\{A \mid A U B\}=$
A) $\frac{1}{3}$
B) $\frac{5}{6}$
C) $\frac{2}{5}$
D) $\quad 1$
20. For any two events A and B
A) $\quad \mathrm{P}(\mathrm{A} \cap \mathrm{B}) \geq 1-\mathrm{P}\left(\mathrm{A}^{\mathrm{c}}\right)-\mathrm{P}\left(\mathrm{B}^{\mathrm{c}}\right)$
B) $\quad \mathrm{P}(\mathrm{A} \cap \mathrm{B}) \geq 1-\mathrm{P}(\mathrm{A})-\mathrm{P}\left(\mathrm{B}^{\mathrm{c}}\right)$
C) $\quad \mathrm{P}(\mathrm{A} \cap \mathrm{B}) \geq 1-\mathrm{P}(\mathrm{A})-\mathrm{P}(\mathrm{B})$
D) $\quad \mathrm{P}(\mathrm{A} \cap \mathrm{B}) \leq 1-\mathrm{P}\left(\mathrm{A}^{\mathrm{c}}\right)-\mathrm{P}\left(\mathrm{B}^{\mathrm{c}}\right)$
21. Let $\left\{A_{n}\right\}$ be a non increasing sequence of events in the sample space. Then $\lim _{n \rightarrow \infty} P\left(A_{n}\right)=$
A) $\quad P\left(\cap_{n=1}^{\infty} A_{n}\right)$
B) $\quad P\left(\cup_{n=1}^{\infty} A_{n}\right)$
C) 0
D) 1
22. If ordered samples of size ' r ' are drawn from a population of ' n ' elements without replacement, the total number of possible samples is:
A) n^{r}
B) $\quad \mathrm{nC}_{\mathrm{r}}$
C) $\quad n P_{r}$
D) r !
23. The set of discontinuity points of a distribution function is
A) uncountable
B) at most countable
C) finite
D) none of these
24. Let G be a function of two variables defined by $G(x, y)=1$ if $x+2 y \geq 1$, and 0 if $x+2 y<1$. Then G is:
A) distribution function of a pair of mixed random variables
B) distribution function of a pair of continuous random variables
C) distribution function of a pair of discrete random variables
D) not a distribution function
25. Which of the following is true for the random variables X and Y having joint pdf $f(x, y)=\frac{1+x y}{4},|x|<1,|y|<1$.
26. X and Y are independent
27. X^{2} and Y^{2} are independent
A) Only 1 is true
B) Only 2 is true
C) Both 1 and 2 are true
D) None of these
28. The numbers $1,2, \ldots, 20$ are arranged in random order. The probability that the digits $1,2, \ldots, 12$ appear as neighbours in that order is:
A) $\frac{3}{5}$
B) $\frac{8!}{20!}$
C) $\frac{12!\times 8!}{20!}$
D) $\frac{9!}{20!}$
29. There are two bags. One bag contains 4 red and 5 black balls and the other 5 red and 4 black balls. One ball is drawn from either of the two bags. Probability of the drawing a black ball is:
A) 1
B) $\frac{16}{81}$
C) $\frac{1}{2}$
D) none
30. Let X and Y be two random variables with $E\left(X^{2}\right)=0.5$ and $E\left(Y^{2}\right)=0.2$. Then
A) $\quad \mathrm{E}\left[(\mathrm{XY})^{2}\right]=0.1$
B) $\quad \mathrm{E}\left[(\mathrm{XY})^{2}\right] \geq 0.1$
C) $\quad \mathrm{E}\left[(\mathrm{XY})^{2}\right] \leq 0.1$
D) $\quad \mathrm{E}\left[(\mathrm{XY})^{2}\right]=0.01$
31. Let $\mathrm{X} \sim \mathrm{P}(\lambda)$, where λ is a positive integer. Then
A) the distribution is unimodal
B) the distribution is bimodal
C) the distribution has no mode
D) the distribution has negative mode
32. Let $X_{1}, X_{2}, \ldots, X_{n}$ be iid random variables that follow geometric distribution with parameter p. Then which of the following statement is true?
A) $\quad \min \left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is a geometric random variable with parameter 1- $(1-p)^{n}$
B) $\quad \min \left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is a geometric random variable with parameter $(1-p)^{n}$
C) $\quad \min \left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is a negative binomial random variable with probability of success 1- (1-p)
D) $\quad \min \left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is a negative binomial random variable with probability of success $(1-p)^{n}$
33. A box contains 20 marbles. Of these, 12 are drawn at random, marked and returned to the box. The content of the box is thoroughly mixed and 5 marbles are drawn at random from the box without replacement. Then the mean number of marked marbles in the sample is:
A) 2
B) 3
C) 4
D) 5
34. If X follows exponential distribution with mean β, then the distribution of $Y=1-e^{-\beta X}$ is:
A) $U[0,1]$
B) exponential
C) Weibull
D) Pareto
35. The moment generating function $M(t)$ of gamma distribution with pdf $f(y)=\frac{1}{\Gamma(\alpha) \beta^{\alpha}} \exp \left(-\frac{y}{\beta}\right) y^{\alpha-1}, y>0, \alpha, \beta>0$. exists when
A) $t<\beta$
B) $t>\beta$
C) $\quad t<\frac{1}{\beta}$
D) $t>\frac{1}{\beta}$
36. Let X and Y be iid $N\left(0, \sigma^{2}\right)$ random variables. Then the distribution of $\frac{X}{Y}$ is
A) Normal
B) Cauchy
C) Chi-square distribution
D) $\quad F$-distribution
37. Which of the following distribution has positive support
A) logistic distribution
B) Weibull distribution
C) double exponential distribution
D) normal distribution
38. In terms of the incomplete beta function defined as $I_{u}(x, y)=\frac{\int_{0}^{u} t^{x-1}(1-t)^{y-1} d t}{\int_{0}^{1} t^{x-1}(1-t)^{y-1} d t}$, the distribution function of the $r^{t h}$ order statistic $X_{r: n}$ when the sample is taken from the distribution function $F(x)$ is:
A) $\quad I_{F(x)}(r-1, n-r)$
B) $\quad I_{F(x)}(r-1, n-r+1)$
C) $\quad I_{F(x)}(r, n-r+1)$
D) $\quad I_{F(x)}(r, n-r)$
39. Let $X_{1: n}, X_{2: n}, \ldots, X_{n: n}$ be the order statistics of a random sample taken from $U[0,1]$ population. The $E\left(X_{r: n}\right)=$
A) $\frac{r}{n}$
B) $\frac{r-1}{n}$
C) $\frac{r-1}{n+1}$
D) $\frac{r}{n+1}$
40. Let $\mathrm{X} \sim \mathrm{F}(\mathrm{m}, \mathrm{n})$. Then $E(X)$ exists only when
A) $\quad m>1$
B) $n>1$
C) $\quad m>2$
D) $n>2$
41. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent $N(\mu, 1)$ random variables, then the distribution of $Y=\sum_{i=1}^{n} X_{i}{ }^{2}$ follows:
A) Central Chi-square distribution
B) t-distribution
C) F-distribution
D) None of these
42. Which among the following statement(s) on bivariate distributions is/are true
43. If (X, Y) has bivariate normal distribution, X and Y are independent if and only if the correlation between X and Y is zero
44. If the marginal distribution of X and Y are normal then the joint distribution of (X, Y) is always bivariate normal
A) 1 only
B) 2 only
C) 1 and 2
D) None of these
45. If $E\left(X^{2}\right)<\infty$, then
A) $\quad V(X) \leq V[E(X \mid Y)]$
B) $\quad V(X) \geq V[E(X \mid Y)]$
C) $\quad V(X)=V[E(X \mid Y)]$
D) $\quad V(X)=V[E(Y \mid X)]$
46. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from $b(1, \theta)$ and X be the number of 1 's in the sample. Then an unbiased estimator of θ^{2} is
A) $\left(\frac{x}{n}\right)^{2}$
B) $\frac{n X-X^{2}}{n(n-1)}$
C) $\frac{X(X-1)}{n(n-1)}$
D) None of these
47. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from $N\left(\theta, \theta^{2}\right)$. Then which of the following is true?
A) $\quad \sum X_{i}$ is a complete sufficient estimator of θ
B) $\quad \sum X_{i}{ }^{2}$ is a complete sufficient estimator of θ
C) $\quad\left(\sum X_{i}, \sum X_{i}{ }^{2}\right)$ is a complete sufficient estimator of θ
D) $\quad\left(\sum X_{i}, \sum X_{i}^{2}\right)$ is a sufficient estimator of θ but not complete
48. Which among the following statement(s) is/are TRUE?
49. A complete sufficient statistic is minimal sufficient.
50. A minimal sufficient statistic is complete sufficient
51. A statistic that is independent of every ancillary statistic is always complete
A) 1 only
B) 2 only
C) 1 and 3 only
D) 2 and 3 only
52. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from exponential distribution with mean β. Then the UMVUE of β is
A) \bar{X}
B) $\frac{1}{\bar{X}}$
C) $\quad X_{(1)}$
D) $n X_{(1)}$
53. Which among the following PDFs satisfy the regularity conditions of Cramer-Rao lower bound?
54. $f_{\theta}(x)=\theta^{-1} e^{-x / \theta}, x>0, \theta>0$
55. $f_{\theta}(x)=e^{-(x-\theta)}, x>\theta$
56. $f_{\theta}(x)=\frac{1}{\theta}, 0<x<\theta$
57. $f_{\theta}(x)=\theta(1-\theta)^{x}, x=0,1, \ldots ; 0<\theta<1$
A) $1 \& 2$ only
B) $1 \& 4$ only
C) $1,2 \& 4$ only
D) $1,2,3 \& 4$
58. Based on a random sample of size n from $U(-\theta, \theta)$, the MLE of θ is
A) $\quad \max \left(X_{i}\right)$
B) $\quad \min \left(X_{i}\right)$
C) $\max \left(X_{i}\right)+\min \left(X_{i}\right)$
D) $\quad \max \left(\left|X_{i}\right|\right)$
59. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample taken from $P(\lambda)$. Suppose that the prior distribution of λ is taken as gamma distribution with parameter (α, β). Then posterior distribution of λ is
A) Beta distribution of first type
B) Beta distribution of second type
C) Gamma distribution
D) None of these
60. A random sample of size n is taken from the pdf $f_{\theta}(x)=\frac{\theta}{x^{\theta+1}}, x \geq 1, \theta>1$. Then the estimate of θ by the method of moments is
A) \bar{X}
B) $\frac{\bar{X}-1}{\bar{X}}$
C) $\frac{\bar{X}}{1-\bar{X}}$
D) $\frac{\bar{X}}{\bar{X}-1}$
61. Let α and β be the probabilities of type I and type II errors of the most powerful test for testing a simple null hypothesis against a simple alternative hypothesis. If $0<\alpha<1$, then
A) $\alpha<\beta$
B) $\alpha<1-\beta$
C) $\alpha \leq \beta$
D) $\alpha \leq 1-\beta$
62. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from the Cauchy distribution with pdf $f_{\theta}(x)=\frac{1}{\pi} \frac{1}{1+(x-\theta)^{2}}, x \in R$. Then which of the following statement is true.
A) $\quad\left\{f_{\theta}(x)\right\}$ possess MLR property
B) Uniformly most powerful test exists for testing $\mathrm{H}_{0}: \theta \leq 0$ against $H_{1}: \theta>0$.
C) The critical region of a locally most powerful test for testing $\mathrm{H}_{0}: \theta \leq 0$ against $H_{1}: \theta>0$ has the form $\sum_{i=1}^{n} \frac{2 x_{i}}{1+x_{i}{ }^{2}}>k$.
D) All the above statements are true
63. Let ℓ be the likelihood ratio statistic for testing the hypothesis $H_{0}: \theta \in \Theta_{0}$ against $H_{1}: \theta \in \Theta_{1}$. Then under some regularity conditions, the asymptotic distribution of $-2 \log \ell$ is:
A) Normal
B) Student's- t
C) Chi-square
D) None of these
64. $\quad p$ - value of a test is the:
A) largest significance level at which the null hypothesis cannot be rejected
B) smallest significance level at which the null hypothesis cannot be rejected
C) largest significance level at which the null hypothesis can be rejected
D) smallest significance level at which the null hypothesis can be rejected
65. Operating Characteristic (OC) function is:
A) the probability of the sequential test procedure terminating with the acceptance of the null hypothesis
B) the probability of the sequential test procedure terminating with the rejection of the null hypothesis
C) the probability of the sequential test procedure arriving at a conclusion
D) None of these
66. The Mann-Whitney U test is preferred to a t-test when
A) data are paired
B) sample sizes are small
C) the assumption of normality is not met
D) sample is dependent
67. A certain steel bar is measured with a device which has a known precision $\sigma=0.5 \mathrm{~mm}$.

Suppose we want to estimate the mean 'measurement' with an error at most 0.2 mm at the level of significance $\alpha=0.05$. What sample size is required if we assume normality?
A) 6
B) 7
C) 24
D) 25
54. In simple random sampling of n units from N units without replacement, the probability of a specified unit of the population being included in the sample is:
A) $\frac{1}{N C_{n}}$
B) $\frac{1}{n}$
C) $\frac{1}{N}$
D) $\frac{n}{N}$
55. In simple random sampling of n units from N units, the variance of the sample mean in SRSWOR is exactly half of the variance of the sample mean in SRSWR when:
A) $\mathrm{n}=\mathrm{N}$
B) $2 \mathrm{n}=\mathrm{N}$
C) $2 \mathrm{n}=\mathrm{N}+1$
D) $\mathrm{n}>50$
56. With the usual notations, in PPSWR an unbiased estimator for the population mean is:
A) $\frac{1}{n} \sum_{i=1}^{n} \frac{y_{i}}{P_{i}}$
B) $\quad \sum_{i=1}^{n} \frac{y_{i}}{P_{i}}$
C) $\quad \frac{1}{n N} \sum_{i=1}^{n} \frac{y_{i}}{P_{i}}$
D) $\quad \sum_{i=1}^{n} \frac{y_{i}}{n}$
57. A population divided into two strata having sizes 16 and 48 respectively. A random sample of size 24 is selected under proportional allocation. Then the stratum sample sizes are
A) 12,12
B) 6,18
C) 16,8
D) 3,21
58. For a population having N units systematic sampling will be more efficient than SRSWOR if the intra class correlation coefficient ρ is:
A) less than $\frac{1}{N-1}$
B) less than $-\frac{1}{N-1}$
C) less than $\frac{1}{N}$
D) greater than $-\frac{1}{N-1}$
59. Which of the following is true?

1. Ratio estimator is as good as regression estimator if regression of y on x is linear and passes through the origin.
2. Ratio estimator and regression estimators are unbiased
A) only 1 is true
B) only 2 is true
C) both 1 and 2 are true
D) neither 1 nor 2 is true
3. The results of a two-factor analysis of variance produce degrees of freedom $(2,24)$ for the F-ratio for the factor A. Based on this information, how many levels of factor A were compared in the study?
A) 2
B) 3
C) 24
D) 25
4. In Gauss-Markov theorem, which of the following is NOT an assumption on errors.
A) The errors need to be homoscedastic with finite variance
B) The errors are normally distributed
C) The errors are uncorrelated
D) None of these
5. Which of the following is TRUE?
A) Randomized block and latin square designs are connected
B) Randomized block design is connected but latin square design is not connected
C) Latin square design is connected but randomized block design is not connected
D) Randomized block and latin square designs are not connected
6. In $\mathrm{k} \times \mathrm{k}$ Graeco-Latin square design, the degrees of freedom of the error sum of square is equal to:
A) (k-1)
B) $\mathrm{k}(\mathrm{k}-2)$
C) $(\mathrm{k}-2)(\mathrm{k}-1)$
D) $(\mathrm{k}-3)(\mathrm{k}-2)$
7. If N is the incidence matrix of a BIBD with usual parameters (v, b, r, k, λ) then which among the following statement(s) is/are true.
8. $\quad \mathrm{NN}^{\prime}=(\mathrm{r}-\lambda) \mathrm{I}+\lambda \mathrm{J}$, where I is $v \times v$ identity matrix and J is $v \times v$ matrix of 1 's
9. $\operatorname{Rank}\left(\mathrm{NN}^{\prime}\right)=v$
A) 1 only
B) 2 only
C) 1 and 2
D) None of these
10. With usual notation, the estimate of the main effect of factor A in a 2^{3} design in which each treatment combination is replicated n times is
A) $\frac{1}{4 n}[a+a b+a c+a b c-(1)-b-c-b c]$
B) $\frac{1}{4 n}[b+a b+b c+a b c-(1)-a-c-a c]$
C) $\frac{1}{4 n}[c+a c+b c+a b c-(1)-a-b-a b]$
D) $\frac{1}{4 n}[a b c+a b+c+(1)-a-b-b c-a c]$
11. A 2^{4} design is arranged in 4 blocks by confounding the factors ABC and ACD . Then which of the following effect is also confounded with blocks.
A) AC
B) $\quad \mathrm{BD}$
C) BCD
D) ABCD
12. Combining two or more overlapping series of index numbers having different base periods into a single continuous series is known as
A) deflating
B) splicing
C) moving average
D) none of these
13. If $\mathrm{L}(\mathrm{p})$ and $\mathrm{P}(\mathrm{q})$ represent respectively the Laspeyre's index number for prices and Paasche's index number for quantities, then
A) $\quad \mathrm{L}(\mathrm{p}) \mathrm{P}(\mathrm{q})=\mathrm{L}(\mathrm{q}) \mathrm{P}(\mathrm{p})$
B) $\quad L(p) P(p)=L(q) P(q)$
C) $\quad L(p) P(q)=L(q)$
D) $\quad L(p) P(q)=P(p)$
14. Which of the following is a Markov Process?
A) Poisson process
B) Galton Watson branching process
C) Random walk
D) All the above
15. Which of the following statements is/ are true?
16. Poisson process is a process with stationary independent increment
17. Brownian motion process is a process with stationary independent increment
A) Only (1) is true
B) Only (2) is true
C) Both (1) and (2) are true
D) neither (1) nor (2) are true
18. If $p_{i j}^{(n)}$ denote the n step transition probability of a Markov chain from state i to j , then $\sum_{j} p_{i j}^{(n)}=$
A) 1
B) 0
C) ∞
D) none of these
19. Consider one dimensional random walk on positive and negative integers, where at each transition the particle moves with probability p one unit to the right and with probability q one unit to the left such that $\mathrm{p}+\mathrm{q}=1$. It is recurrent iff
A) $\mathrm{p}=\mathrm{q}=0.5$
B) \quad p $<$ q
C) \quad p $>q$
D) $\quad \mathrm{p} \neq \mathrm{q}$
20. Let $\left\{\mathrm{X}_{1}(\mathrm{t})\right\}$ and $\left\{\mathrm{X}_{2}(\mathrm{t})\right\}$ be two independent Poisson processes with parameters λ_{1} and λ_{2} respectively. Then the distribution of $\mathrm{X}_{1}(\mathrm{t})=\mathrm{k} / \mathrm{X}_{1}(\mathrm{t})+\mathrm{X}_{2}(\mathrm{t})=\mathrm{n}$ is:
A) Poisson with parameter $\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}$
B) Binomial with parameters k and $\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}$
C) Binomial with parameters n and $\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}$
D) Binomial with parameters k and λ_{1}.
21. Among the following methods of finding trend, the method having greater subjectivity is:
A) moving average method
B) free hand method
C) least squares method
D) semi-average method
22. The value one season expressed as the percentage of the preceding season is known as:
A) link relatives
B) Chain relatives
C) seasonal indices
D) None of the above
23. In an $M / M / 1$ queue with arrival rate λ and service rate μ, the steady state probabilities:
A) always exist
B) exist only when $\lambda \leq \mu$
C) exist only when $\lambda<\mu$
D) exist only when $\lambda>\mu$
24. Which of the following are true for a random vector X having multivariate normal distribution?
25. Linear combinations of the components of X are normally distributed
26. All subsets of the components of X have a normal distribution
27. Zero covariance implies that the corresponding components are independently distributed
28. The conditional distributions of the components are normal.
A) All the above
B) only 1,2 and 4
C) only 1 and 4
D) only 1,3 and 4
29. If X is distributed as $\mathrm{N}_{\mathrm{p}}(\mu, \Sigma)$ with $|\Sigma|>0$, then the distribution of $(X-\mu)^{\prime} \Sigma^{-1}(X-\mu)$ is distributed as:
A) $\quad \chi^{2}$ with p degrees of freedom
B) $\quad \chi^{2}$ with $p-1$ degrees of freedom
C) $\quad N_{p}(0, I)$
D) $\quad N_{p}\left(0, \mu \Sigma \mu^{\prime}\right)$
30. Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}$ be a random sample from $\mathrm{N}_{\mathrm{p}}(\mu, \Sigma)$. Define $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ and $S=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(X_{i}-\bar{X}\right)^{\prime}$. Then $(\mathrm{n}-1) \mathrm{S}$ is distributed as:
A) Wishart with n d.f
B) Chi-square with p d.f
C) $\quad \mathrm{N}_{\mathrm{p}}(\mu, \Sigma)$
D) Wishart with $(n-1)$ d.f
31. A measure of linear association of a variable X_{1}, with several other variables $X_{2}, X_{3}, \ldots, X_{k}$ is known as:
A) partial correlation
B) multiple correlation
C) simple correlation
D) autocorrelation
